The HFAuto Project
and
A review and framework of task transitions in automated driving

Zhenji Lu, Joost de Winter, and Riender Happee

Chris Dijksterhuis

Department of BioMechanical Engineering,
Faculty of Mechanical, Maritime and Materials Engineering

8 December 2015
The HFAuto Project

- Marie Curie Action
 - Innovative Training Network
- Across 5 European countries
 - The Netherlands
 - Sweden
 - Germany
 - UK
 - France
- 7 full partners, 8 associated partners
- 3.6 M Euro
- Period 2013 – 2017
- 13 Early Stage Researchers (PhD-students)
 - 1 Experienced researcher
- Programme manager: Riender Happee
- http://hf-auto.eu/
The HFAuto Partners

Full Partner – Delft University of Technology (TU Delft)
Full Partner – Technische Universität München (TUM)
Full Partner – University of Southampton (SOTON)
Full Partner – University of Twente
Full Partner – Chalmers University of Technology
Full Partner – IFSTTAR
Full Partner – VTI
Associated Partner – Volvo Technology Cooperation (VTEC)
Associated Partner – Volvo Car Corporation (VCC)
Associated Partner – BMW
Associated Partner – Jaguar
Associated Partner – Toyota Motor Europe
Associated Partner – Continental
Associated Partner – TNO
Associated Partner – SWOV
HFAuto at TU Delft

- Zhenji Lu
- Joost de Winter
- Riender Happee
- Miltos Kyriakidis
- Christopher Cabrall
- Pavlo Bazilinskyy

- Silvia Varotto
- Haneen Farah
- Marjan Hagenzieker
- Bart van Arem
HFAuto research aims

• To generate knowledge on Human Factors of automated driving towards safer road transportation.

• How should human-machine-interfaces (HMI) be designed to support transitions between automated and manual control?

• How can the automation understand the driver’s state and intentions?

• What are the effects of HAD on accident risk and transport efficiency?
HFAuto work packages

- Human behaviour during highly automated driving
- Human-machine interface of the future highly automated vehicle
- Driver-state monitor for highly automated driving
- Predicting real-world effects of highly automated driving
- Legal and market perspective of highly automated driving

Tasks and transitions in automated driving

Zhenji Lu and Joost de Winter

8 December 2015
Levels of automated driving

<table>
<thead>
<tr>
<th>Levels of Driving Automation</th>
<th>Dynamic control</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Automated</td>
<td>Human</td>
<td>Human</td>
</tr>
<tr>
<td>Driver assistance</td>
<td>Human + Automation</td>
<td>Human</td>
</tr>
<tr>
<td>Partial Automation</td>
<td>Automation</td>
<td>Human</td>
</tr>
<tr>
<td>Conditional Automation</td>
<td>Automation</td>
<td>Automation</td>
</tr>
<tr>
<td>High Automation</td>
<td>Automation</td>
<td>Automation</td>
</tr>
<tr>
<td>Full Automation</td>
<td>Automation</td>
<td>Automation</td>
</tr>
</tbody>
</table>

SAE int (2014) Automated driving. Levels of driving automation are defined in new SAE int standard J3016

Does not fully describe the task distribution between the human and automation.
Tasks in automation driving; who does what?

Shared (simultaneous) Control
Transition; a change in driving state

Example
From
SAE level 1: Driver Assistance (ACC)
To
SAE level 4: Conditional Automation

Agent
Human Driver
Automation
Both

Tasks
Longitudinal control
Lateral control
Monitoring (initiate transitions)
Transitions, further characterised….

- Who initiates it?
- Who performs which tasks afterwards?

- Is a transition safety critical (mandatory vs. optional)?
 - Readiness check?
- Who has (final) transition authority?
 - E.g. transition by consent?
 - What about emergency situations?

Example situations
- Automation Failure
- Entering Platoon
- Take over request
- Only by consent?
- Emergency

8 December 2015
Focus in literature

- Engineering: driver initiated, automation control
 - Controllability problems

- HF literature: Take over requests (AI, DC)
 - Following self-detected limitation of automation
 - Warning / Request
 - Time critical

- HF literature: monitoring automation
 - Reliability, complacency
 - Reaction times
 - Situation Awareness

- Human Machine Interface design
Transition challenges include:

- Fundamental understanding of the process of transitions.
 - Transition phases
 - Cognitive vs. motor readiness
 - Initial human state
 - How to get the driver back into the loop?

- Monitoring human state
 - Biometrical parameters (driving behaviour)
 - Mental workload, Situation awareness – **Mental state classifications**
 - Readiness check
 - (Adaptive automation)
 - Is the human driver ready to resume control?
 - Should the human driver continue to drive?

- Driving state (mode) awareness
 - Clumsy, confusing automation
 - How many states should a vehicle maximally have?

- HMI design: auditory, visual, haptic, multimodal.
Thanks!

HFAuto
http://hf-auto.eu/

c.dijksterhuis@tudelft.nl

8 December 2015
References

